Comparative thermal stability studies of some isomeric phenolic β-diketones and their phenolic pyrazoles by thermogravimetric analysis

Mehwash Zia, Muhammad Zia-ul-Haq

Abstract


The thermal degradation and thermal stability of some isomeric phenolic β-diketones I(a-b) their phenolic pyrazoles II(a-b) and III(a-b) were studied with thermogravimetric analysis TGA. The isomeric phenolic β-diketones I(a-b) were synthesized via modified Baker-Venkataraman rearrangement. Isomeric β-diketones were converted to their phenolic pyrazoles II(a-b) and III(a-b) on reaction with phenyl hydrazine. Factors effecting thermal stability based on the initial decomposition temperature (IDT), temperature of maximum weight loss (Tmax), decomposition temperature ranges and activation energy (Ea) of the decomposition reaction were studied. Activation energy, enthalpy and entropy of all the synthesized products were calculated by Horowitz and Metzger’s method, an integral method for the determination of reaction order from the thermogravimetric data. On the basis of IDT, ortho isomer of phenolic β-diketones (Ib) was found to be more stable than that of its para counterpart (Ia). Among the phenolic pyrazoles, compound IIIa exhibited the highest initial decomposition temperature (IDT) followed by IIb, IIa and IIIb (in decreasing order). 


Keywords


Phenolic β-diketones; phenolic pyrazole; thermal stability; thermogravimetric analysis; activation energy.

Full Text:

PDF

References


Ahmad, R., Malik, M. A., & Zia ul Haq, M. (1990). Synthesis and spectroscopic studies of some phenolic β-diketones. Journal of the Chemical Society of Pakistan, 12(4), 350-354.

Ahmad, R., Zia-ul-Haq, M., Duddeck, H., Stefaniak, L., & Sitkowski, J. (1997). Study of the conformational equilibria of some 2-(2′-hydroxyphenyl)-4-aryl-3H-1,5-benzodiazepines using 1H, 13C, and 15N NMR spectroscopy. Monatshefte für Chemie/Chemical Monthly, 128(6-7), 633-640.

Ahmad, R., Zia-ul-Haq, M., Hameed, S., Akhtar, H., & Duddeck, H. (2000). An unexpected synthesis of novel oxygen-bridged 1,5-benzothiazepine derivatives and their reductive five-membered-ring opening. Monatshefte für Chemie/Chemical Monthly, 131(4), 393-400.

Ahmad, R., Zia ul Haq, M., Khan, N., & Kausar, N. (1996). Regioselective cyclocondensation reactions leading to phenolic pyrazoles. Arabian Journal for Science and Engineering, 21(3), 393-401.

Araújo, A. A. S., Cides, L. C. S., Storpirtis, S., Matos, J. R., & Bruns, R. E. (2005). Effects of experimental conditions on the estimation of kinetic parameters of the thermal decomposition of azt using factorial design. Journal of Thermal Analysis and Calorimetry, 79, 697–701.

Balbi, A., Anzaldi, M., Macciò, C., Aiello, C., Mazzei, M., Gangemi, R., Castagnola, P., Miele, M., Rosano, C., & Viale, M. (2011). Synthesis and biological evaluation of novel pyrazole derivatives with anticancer activity. European Journal of Medicinal Chemistry, 46, 5293-5309.

Bieller, S., Haghiri, A., Bolte, M., Bats, J. W., Wagner, M., & Lerner, H. (2006). Transition metal complexes with pyrazole derivatives as ligands. Inorganica Chimica Acta, 359, 1559–1572.

Fustero, S., Sanchez-Rosello, M., Barrio, P., & Simon-Fuentes, A. (2011). From 2000 to Mid-2010: A fruitful decade for the synthesis of pyrazoles. Chemical Reviews, 111, 6984–7034.

Heller, S. T., & Natarajan, S. R. (2006). 1,3-Diketones from acid chlorides and ketones: a rapid and general one-pot synthesis of pyrazoles. Organic Letters, 8(13), 2675-2678.

Heravi, M. M., Sadjadi, S., & Oskooie, H. A. (2008). An efficient synthesis of 3H-1,5-benzodiazepine derivatives catalyzed by heteropolyacids as a heterogeneous recyclable catalyst. Journal of the Chinese Chemical Society, 55, 842-845.

Horowitz, H. H., & Metzger, G. (1963). A new analysis of thermogravimetric traces. Analytical Chemistry, 35 (10), 1464–1468.

Jaćimović, Z. K., Bogdanović, G. A., Holló, B., Leovac, V. M., & Szécsényi, K. M. (2009). Transition metal complexes with pyrazole-based ligands. Part 29. Reactions of zinc(II) and mercury(II) thiocyanate with 4-acetyl-3-amino-5-methylpyrazole. Journal of the Serbian Chemical Society, 74(11), 1259–1271.

Mallakpour, S., & Taghavi, M. (2009). The accuracy of approximation equations in the study of thermal decomposition behaviour of some synthesized optically active polyamides. Iranian Polymer Journal, 18 (11), 857-872.

Mallikarjun, K. G. (2004). Thermal decomposition kinetics of Ni (II) chelates of substituted chalcones. E-Journal of Chemistry, 1(2), 105-109.

Nascimento, J. E. R., De Oliveira, D. H., Abib, P. B., Alves, D., Perin, G., & Jacob, R. G., (2015), Synthesis of 4-arylselanylpyrazoles through cyclocondensation reaction using glycerol as solvent. Journal of Brazilian Chemical Society, 26(8), 1533-1541.

Nasseri, M. A., Salimi, M., & Esmaeili, A. A. (2014). Cellulose sulfuric acid as a bio-supported and efficient solid acid catalyst for synthesis of pyrazoles in aqueous medium. Royal Society of Chemistry Advanced, 4, 61193.

Nishiguchi, G. A., Rodriguez, A. L., & Katzenellenbogen, J. A. (2002). Diaryl-dialkyl-substituted pyrazoles: regioselective synthesis and binding affinity for the estrogen receptor. Bioorganic & Medicinal Chemistry Letters, 12, 947–950.

Pradhan, J., & Goyal, A. (2015). β-Diketones: Important intermediates for drug synthesis. International Journal of Pharmaceutical Research & Allied Science, 4(2), 1-18.

Schmidt, A., & Dreger, A. (2011). Recent advances in the chemistry of pyrazoles. Properties, biological activities and syntheses. Current Organic Chemistry, 15, 1423-1463.

Schmitt, D. C., Taylor, A. P., Flick, A. C., & Kyne, R. E. (2015). Synthesis of pyrazoles from 1,3-diols via hydrogen transfer catalysis. Organic Letters, 17, 1405−1408.

Shahbazi, S., Stratz, S. A., Auxier, J. D., Hanson, D. E., Marsh, M. L., & Hall, H. L. (2017). Journal of Radioanalytical and Nuclear Chemistry, 311, 617–626.

Sheikh, J., Juneja, H., Ingle, V., Ali, P., & Hadda, T. B. (2013). Synthesis and in vitro biology of Co(II), Ni(II), Cu(II) and Zinc(II) complexes of functionalized beta-diketone bearing energy buried potential antibacterial and antiviral O,O pharmacophore sites. Journal of Saudi Chemical Society, 17, 269–276.

Singh, O., & Singh, K. (2012). Kinetics and thermal decomposition of Sm (III) complex with embelin (2,5- dihydroxy-3-undecyl-p-benzoquinone). International Journal of Science and Nature, 3(3), 639-641.

Vigato, P. A., Peruzzo, V., & Tamburini, S. (2009). The evolution of β-diketone or β-diketophenol ligands and related complexes. Coordination Chemistry Reviews, 253, 1099–1201.

Wang, X., Tan, J., & Zhang, L. (2000). Regioselective synthesis of unsymmetrical 3,5-dialkyl-1-arylpyrazoles. Organic Letters, 2(20), 3107-3109.

Yousef, T. A., Abu El-Reash, G. M., El-Gammal, O. A., & Bedier, R. A. (2013). Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone. Journal of Molecular Structure, 1035, 307–317.


Refbacks

  • There are currently no refbacks.

Comments on this article

View all comments




Copyright (c) 2016 Journal of Contemporary Research in Chemistry

ISSN : 2521-5116 (print version)

ISSN : 2521-5353 (online version)

JCRC @ Facebook

Indexing:

Maintained by: Kamran Mir, Directorate of ICT, AIOU